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Abstract Many problems of mathematical physics can be formulated in terms

of the operator equation Ax = y, where A is an integro-differential

operator. Given A and x, the solution for y is usually straightforward.

However, the inverse problem which consists of the solution for x when

given A and y, is much more difficult. In this paper the following

questions relative to the inverse problem are explored:

(1) Does specification of the operator A determine the set ty}

for which a solution x is possible?

(2) Does the inverse problem always have a unique

solution?

(3) Do small oerturbations of the forcing

function y always result in small perturbations of the solution?

(4) What are some of the considerations that enter into the choice

of a solution technique for a specific problem?

The concept of an ill-posed problem versus that of a well-posed

problem is discussed. Specifically, the manner by which an ill-posed

problem may be regularized to a well-posed problem is presented. The

concepts are illustrated by several examples.
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1. Introduction: Many problems of mathematical physics can be formulated

in terms of an operator equation

Ax = y. (1)

Typically, y denotes the system output and x denotes the unknown to be

solved for. Depending upon the problem, either A or x may be defined

as the system operator. For example, in a linear system identification

problem the goal is to determine the system operator given the response

to a specific input. The system operator (i.e. the impulse response)

would then be denoted by x and the input by A. On the other hand, in a

radiation problem the objective might be to solve for the excitation

currents on a structure given the radiated field y(t). In this case, the

excitation current would be denoted by x and the system operator (i.e.

the Green's function operator) would be denoted by A. Given A and x, the

direct problem of solving for the output y is relatively straightforward.

However, the inverse problem which consists of the solution for x given

A and y is much more difficult. One of the difficulties that may arise

is illustrated in Example 1.

Example 1: Consider a linear system with impulse response x(t) that is

excited by an input A(t) applied at t = 0. The system response is given

by the integral equation

t

y(t) = Ax = JA(t - T)X(T)dT. (2)

0

Given the input A(t) and the output y(t), assume the objective is to find

the impulse response x(t). In spite of the fact that a solution for x(t)

may exist and be unique, the integral equation of (2) is difficult to

solve due to the smoothing action of the convolution operator. For

example, denote the exact solution by

x t) x(t) (3)

and a perturbed solution by

x2 (t) x(t) + C sin w~t (4)

0' * J
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Even for very large values of C, the frequency w can be chosen high

enough such that the difference between y, = Ax1 and y 2 
= Ax2 is made

to be arbitrarily small. This is demonstrated as follows:

The difference between Y2 and yl is

t

Ax Ax = C [A(t - T)sin WT dT, (5)
Y2 - Yl 2 - 1

0

If the input A is bounded,

HAII < M (a constant) (6)

it follows that
t

Y Y < CMJ sin wT dT = CM(l - cos Wt) (7)

0

We conclude that

Ily - y 1 I < ¢* (8)

Obviously, by selecting w to be sufficiently large, the difference y2 - Yl

can be made arbitrarily small. The ill-posedness of this example is

evidenced by the fact that small differences in y can map into large

differences in x. This is a serious problem because, in practice, measure-

ment of y will be accompanied by a nonzero measurement error (or repre-

sentation error in a finite dimensional digital system) 6. Use of the

"noisy" data can yield a solution significantly different from the desired

solution.

When a problem is ill-posed, an attempt should be made to regularize

the problem. The solution to the regularized problem will be well-

behaved and will offer a reasonable approximation to the solution of the

ill-posed problem.

The concepts of well-posed problems and the regularization of ill-

posed problems have been discussed in depth in the mathematical litera-

ture [1 - 81. In this paper, we illustrate some of the significant

concepts involved by means of simple examples that arise in engineering

applications.

- *~-- - S %-.
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2. The Definition of a Well-Posed Problem

Hadamard introduced the notion of a well posed (correctly or properly

posed) problem in the early 1900's when he studied the Cauchy problem in

connection with the solution of Laplace's equation. He observed that the

solution x(t) did not continuously depend on y(t). Hadamard concluded

that something had to be wrong with the problem formulation because

physical solutions did not exhibit this type of discontinuous behavior.

Other mathematicians, such as Petrovsky, also reached the same conclusion.

As a result of their investigation, a problem characterized by the equation

Ax = y is defined to be well-posed provided the following conditions are

satisfied

(1) The solution x exists for each element y in the Hilbert space Y

(2) The solution x is unique

(3) Small perturbations in y result in small perturbations in the

solution x without the need to impose additional constraints.

If any of the above conditions are violated, the problem is said

to be ill-posed. Examples of ill-posed problems are now discussed. We

first consider an example in which condition (1) is violated.

Example 2. Suppose it is known that

y W xit I + x2t2 • (9)

In addition, assume that the observation y is contaminated by additive

noise. The observations and corresponding time instants are tabulated

in Table 1.

Table 1

ti  2 1 1

t2  1 2 3

observation of y 3 3 5

Determination of x and x2 leads to consideration of the following

matrix equation:

Ax [ j = r] (10)

1
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Since (10) consists of 3 independent equations in 2 unknowns, a solution

does not exist. Condition (1) is violated and the problem is ill-posed.

Example 3: Violation of condition (2) is illustrated in this example.

Given a set of measured sample values, consider the problem of using

Prony's method to represent a time function y(t) by a sum of two complex

exponentials. Specifically, it is desired to determine i and C, i

1,2, such that

C1 exp(O 1t) + C2 exp( 2t) = y(t) (11)

In this case the unknown vector is

B2 =(12)

C2

and A is the operator that maps x into y. Assume

y(t) - exp [-0.00035t] cos (0.25t). (13)

Corresponding to sampling instants given by

t - (0,1,2,3,4) (14)

y(t) is given by

y - (1,0.97,0.88,0.73,0.54) . (15)

However, in practice, measurements of the sample values are accompanied by

measurement error. For example, the measured sample values of y may be

given by

d - (d0,dl,d2,d3,d4 ) - (1.01,0.96,0.89,0.72,0.54) (16)

Employing Prony's method [91, it is convenient to define

a, - expli ; i - 1,2. (17)

Values of si are then obtained from the polynomial equation2

aosI +li 2+ a a 0. (18)

Using a least-squares error approach [101, the coefficients in (18) are

obtained by solving the matrix equation
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r00  10  c20  0 o
Ca= C01 Cl1 C21 a l -- (19)

'C02  C12  C22  a 2

where 4

C j k k 2 dk-1d j =ji. (20)

In general, the determinant of C is nonzero and a solution does not exist

to (19). However. note that any one of the coefficients in (18) can be

set equal to unity without affecting the solution for the roots.

Depending upon whether a0 , a1 or a2 is chosen to be unityp (19) reduces to

one of the following sets of equations:

1 , 1 1 a0  I (21a)
12 22 a 2 L0q °02

or

r00  C 20  aol

LC02  C22] a2] _~ : ; 12
6r

00 C 1 ra00 1 j 0] a,2 .(21c)01 11J L'J j
C 0 C I Ia] CI

Therefore, having set one of the coefficients to unity, the remaining

two coefficients may be determined from either (21) a, b or c. These

coefficients are then substituted in (18) which is then solved for si .
Unfortunately, (21a), b or c do not result in an equivalent set of

coefficients. Consequently, the values of si differ as shown in Table 2.

Table 2

Coefficient set to unity Equation used

a0 M 1 (21a) 0.87 + JO.23

a1 W 1 (21b) 0.98 + JO.22

&2 a 1 (21c) 1.1 + JO.14

Since the solution is not unique, condition (2) is violated and the prbler:

is ill-posed when inaccurate measured data is used. Interestingly enough,

a.



had the samples of y in (15) been available in place of the measured

data d in (16), an equivalent set of coefficients would have been obtained

from either (21a), b or c. Use of these coefficients in (18) results in

si = 0.97 + jO.25, where the numerical values have been rounded off to

two decimal places. Therefore, Prony's method is well-posed in the absence

of any disturbance.

The final example in this section illustrantes a problem for which

condition (3) is violated.

Example 4: Consider solution of the matrix equation Ax y where A is

the 4 x 4 symmetric matrix of reference [111.

36.86243 51.23934 53.50338 50.49425

A = 51.23934 71.22350 74.37005 70.18714

53.50338 74.37005 77.66275 73.29752 (22)

50.49425 70.18714 73.29752 69 .1788 2 J
and

T
y ( (192.09940 267.02003 278.83370 263.15773 (23)

where the superscript T denotes transpose. It is readily verified that

the exact solution is given by
T
x i [1 1 1 11.

However, it can be shown that A is an i11-conditioned matrix in the sense

that the ratio of its maximum to minimum eigenvalues is on the order of
18

10

Let us study the effect on the solution x when only one component of y

is changed in the fifth decimal place. Specifically, we obtain the results

presented in Table 3.
Table 3

T
y T (192.00939 267.02003 278.83370 263.157731
T
x T [-6,401,472,429 3,866,312,299 1,607,634,613 -953,521,374]

YT - [192.09940 267.02002 278.83370 263.15573]
T
xT [3,866,312,299 -2,335,145,694 -970,966,842 575,900,5391

y * [192.00940 267.02003 278.83369 263.15573

T
x [ (1,607,634,615 -970,966,842 -403,733,529 239,462,717]

y T [192.09940 267.02003 278.83370 263.157721

xT * [-953,521,374 574,900,539 239,462,717 -142,030,2941

Clearly, extremely small perturbations in y result in large variations

in x. Condition (3) is violated and the problem is ill-posed.

6
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3. Regularization of an ill-posed problem

Host inverse problems of mathematical physics are ill-posed under

the three conditions of Hadamard. In a humorous vein Stakgold [12]

pointed out that there would likely be a sharp drop in the employment of

mathematicians if this were not the case.

Given an ill-posed problem, various schemes are available for defining

an associated problem which is well-posed. This approach is referred to as

regularization of the ill-posed problem. In particular, an ill-posed

problem may be regularized by

(a) changing the definition of what is meant by an acceptable solution,

(b) changing the space to which the acceptable solution belongs,

(c) revising the problem statement,

(d) introducing regularizing operators, and

(e) introducing probabilistic concepts so as to obtain a stochastic

extension of the original deterministic problem.

The above techniques are now illustrated by a series of examples.

Technique (a) is demonstrated in Example (5).

Example 5. Once again consider the problem introduced in Example 2. This

resulted in (10) for which a solution did not exist. Nevertheless, an

approximate solution is possible. One of several possible approximate

solutions for any overdetermined linear system is the Moore Penrose

generalized inverse [25] which is a least squares solution to (1) and is given by

x [A*A]1- A*v = [0.8 l (25)= . = 1.3142" .

v -" the asterisk denotes the transpose conjugate. Note that x does not

exactly satisfy any of the three equations in (10). Yet x is a reasonable

approximate solution. We see that the original problem which was ill-posed

because a solution did not exist has been regularized by redefining what is

meant by an acceptable solution.

Use of technique (b) is illustrated in Example (6).

Example 6: Relative to Lewis Bojarski inverse scattering [13-15], the

relationship at all frequencies and aspects between the back scattered

fields y(k) to the size and shape of the target x(r) is given by

" -- ' • I I 11 illlli-I I I |.-Iil li li I i |
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y(k) f J x(r)exp(-jkr)dr. (26)

This relation is valid under the assumption that the target currents are

obtained using a physical optics approximation. In (26) A is the Fourier

transform operator. The solution to (26) is given by the inverse Fourier

transform

x(r) - f y(k)exp[jkr]dk (27)

where for convenience, the constant Q = V/V- has been introduced.

It is now demonstrated that this problem is ill-posed when solutions

are allowed in the metric space for which the norm is defined to be

jjxl(r) - xo(r)i g maxlxl(r) - xo(r)l. (28)

On the other hand, the problem is well posed in the space for which the

norm is defined to be

lix (r) - x0(r) { [x1(r) - x(r)] dr}/2 (29)

The first norm is referred to as the 'sup' norm whereas the second norm
2

is known as the a norm.

Given a scattered field function y0 (k), consider the perturbed

scattered field function y1 (k) such that

yl(k) - y0 (k) + c exp(-ak 
2

where C and a are arbitrary positive constants. Then

xl(r) .- Q-exp[jkr]{yo(k) + e exp[-ak]}dk

M x0 (r ) + _0C Texp[+j kr .-ak 2 dk

E 2
M x0(r) + Q exp [_- 1. (30)

Using the sup norm, the perturbations in the expressions for yl(k) and

x (r) are bounded by
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max 1lyl(k) - yo(k)II < ek

max Ix 1(r) - xO(r)I1 < -Re (31)r 2,

Obviously, for a fixed small perturbation in y0 (k), the perturbation in

xO(r) can be arbitrarily large depending upon the choice of a. Hence,

the third condition of Hadamard is violated and the inverse Fourier

transform is ill-posed in the metric space using the sup norm. Physi-

cally, this implies that the inverse Fourier transform is ill-posed

under a pointwise convergence criterion.

On the other hand using the 2 norm,

2df 2 1/2
Ilyl (k) -y 0(k)l Cy {lY(k)-yo0(k)] e -fEexp[-2ak2]dk} 1/

and

xl(r)-x (r)lI { ,lx -(r)-x 0r)12drIl/2 = - Jexp[ "a] dr2

- QC(-Z')I 4. (32)

Since the 2 norm of the perturbation for xO(r) and yo(k' differ only

by the constant Q, small perturbations in yo(k) result in small per-

turbations in xo(r). Hence, the inverse Fourier transform is well posed
2

under the & norm, which implies that convergence in the mean square

for the shape of the structure can be obtained.

In this example, we have illustrated how a problem can be made

well-posed Just by changing the soace of the soltinn. Physically

this implies that the problem is well posed when we want an "average"

description of the target and the problem is ill posed when we demand an

accurate precise definition of the target.
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Example 7: In this example a problem is regularized by means of

technique (c) (i.e., revising the problem statement). Consider a

linear system identification problem where A(t), x(t) and y(t) denote

the input, impulse response, and output, respectively. Using the

convolution integral the output is

y(t) f x(t - T)A(t)dT. (33)

Application of Fourier transform theory results in the solution for

the impulse response as

x(t) f ( exp (jwt)dw (34)

where (w) and A() are the Fourier transforms of y(t) and A(t),

respectively.

In practice, the ideal output is contaminated by additive noise.

Denote the measured response by d(t) where

d(t) = y(t) + n(t) (35)

and n(t) represents a stationary zero mean additive noise process. The

correlation function of n(t) is denoted by O(T) and its Fourier trans-

form by O(w). When the measured noisy response d(t) is used in place

of the ideal output y(t), the solution x(t) is a random process. The

variance of x(t) is given by [161

2 M1 Mw
0 2W .rLA(w)2 dw. (36)x 27r2 Aw

This problem is considered to be well posed only if 02 is suitably small.
x

Typically, the noise is assumed to contain a background component of

white noise. With this assumption, the power spectral density ;(W)

approaches a nonzero constant K as I approaches infinity. On the

other hand, for finite energy inputs, iA(w)I approaches zero as 1w!

approaches infinity. With these assumptions, a2 is infinite and thex

problem is obviously ill posed.

- - |
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This problem can be made well-posed by revising the problem state-

ment. From a mathematical point of view, the input could be restricted

to signals whose Fourier transform A(w) is a rational function with

numerator polynomial of higher degree than the denominator polynomial.
2

Then, even with a white noise background, a remains finite and the
x

problem becomes well-posed. However, this regularization implies the

presence in A(t) of singularity functions such as impulses, doublets, etc.

Therefore, the regularization is achieved at the expense of requiring

A(t) to be an unrealizable signal having infinite energy.

A preferable approach is to remove the commonly used assumption

of a white noise background. Provided the power spectral density of

the noise O(w) falls olf in frequency at a rate which is at least as

fast as that of Ia (c>O, arbitrary), a will be finite. This demon-
x.

strates that the noise must be carefully modeled if the problem is to be well-posec

Technique (d),the application of regularizing operators, is dis-

cussed next. In example 2, it was shown that the three simultaneious

equations were inconsistent and, therefore, an exact solution did not

exist. In example 5, an approximate solution was obtained using the

least squares approach. The solution was given by

x - [A*A]-1 A*y (37)

As the dimensionality of the problem is increased, there is a tendency

for the solution to oscillate and increase in magnitude. Therefore, the

problem becomes ill-posed as the dimensionality increases.

This difficulty may be overcome by introducing regularizing operators

which impose additional constraints on the solution. In particular,

instead of solving the problem

Ax - y (38)

22
attention is focused on the problem of minimizing l(Ax - yl 2 under the

constraint I iixI 2 - C, where L is a suitably chosen linear operator.

Equivalently,one finds

minimum 11AX -yj1 2 + u2 H1tx11 2)  (39)
x

where p plays the role of a Lagrange multiplier. If L is the identity

7'mo
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operator, this approach will result in that solution x which carries out
2

the minimization in (39) having a specified value of 11xjI . If I is the

derivative operator, this approach will result in that solution x which

carries out the minimization in (39) having a specified degree of smooth-

ness (i.e. a specified value of tIdx/dtI2 ).

The parameter P is determined by the constraint (e.g. the specified

value of 1ixl 2 or the specified degree of smoothness or a combination of

both) [17].

Many choices of the operator L are possible and one may simultane-

ously apply several constraints with several corresponding Lagrange

multipliers (17].

Solution of the problem posed in (39) is equivalent to the solution
of the matrix equation

(A*A + 2 *)x = A*y(40)

and is given by

x = (A*A + L *L)-I A*y. (41)

This approach is known as the Tykhonov regularizing scheme [3,18). Note,

if L is the null operator (i.e. if no constraint is imposed), the solu-

tion in (41) reduces to the classical least squares solution of (37).

The Tykhonov regularizing scheme has been used to regularize the

ill-posed pattern synthesis problem by Deschamps and Cabayan [19] and

Mautz and Harrington [20] and the image processing problem [23, 24].

The last approach to be discussed for regularizing an ill-posed

problem is technique (e). In this approach a stochastic extension of

an otherwise deterministic problem is obtained by introducing probabilistic

concepts. Once again, consider the problem of Ax - y, where A and y are

deterministic quantities. As mentioned previously, perfect measurement,

or observation of y is impossible. In some cases use of the "noisy"

measurements for y results in an ill-posed problem. With technique (e),

the problem is made well-posed by recognizing that uncertainty in the

observation of y causes uncertainty in the resulting solution for x.

Consequently, the solution is viewed as a random process. An error

it .... ...
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criterion is specified and a stochastically optimum solution is obtained.

The solution is stochastically optimum in the sense that repetition in

measurements of y produces solutions for x which, on the average, are

optimum according to the specified error criterion.

Let the "noisy" measurements of y be denoted by d such that

d = y + n (42)

where n represents additive noise. In practice, n may be due to measure-

ment error, numerical roundoff error, or system noise. Substitution of

(42) into (38) results in the equivalent problem

Ax + n = d. (43)

Assume that the means of x, n and d are known along with the auto-

correlation functions Rxx, Rnn , Rdd and the cross correlation functions

Rxd and R.n

Without loss of generality, x, n and d each can be considered to

have zero mean since an equation identical in form to (43) is obtained

where the known means are subtracted from the equation. If the solution

for x is denoted by R, the error is given by c = (x - R). For purposes

of illustration, consider the squared-error criterion given by

Icd2 . Ix- 212.  (44)

The optimum solution for x is defined to be that linear solution which

minimizes the mean-squared error E([E I2  where E denotes the expectation

operator. Let the solution for x have the form
A

x - Ld (45)

where L is a linear operator. The mean-squared error is then given by

Ei(C1 2 1 - Ef(x - Ld)(x - Ld)*]. (46)

In terms of the known correlation functions the mean-squared error

becomes

E[1.1 2 1 - Rxx _ LRdx - RxdL, + LR ddL*

= R= - LRxd - RxdL* + LRddL*

a (R -R RdRd] + [L-RxR1 IRd[L-R R] (47)
xx xd dd xd xd dd dd xd dd .
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It is concluded that the minimum mean squared error solution is given

by

X RxdRdd (49)

Existence and stability of this solution is guaranteed. when Rdd is

positive definite.

Substituting for d from (43), the correlation functions in (49)

become

Rxd = E[xd*] = E[x(x*A*+n*)] - R A* + R
xdxx xn

Rdd - E[dd*] = E[(Ax+n)(x*A*+n*)] = AR A* + R* A* + AR + Rnn (50)
Rdxx xn xn nn

Thus the solution may also be expressed as

x RxxA*+ R I[ARA* + R* A* + AR + .R d (51)
x = n [ + Axx xn xn n

Assuming the random variables x and n are uncorrelated, R = 0. The
xn

solution then simplifies to

A - d
x RxxA*[AR xxA* + R] d. (52)

Without noise R = 0 and the solution reduces to the classical solution
= -l nn

X a A d.

An obvious difficulty with (52) is that it involves Rxx , the auto-

correlation of the deterministic unknown in the original equation (38).

Therefore, it is necessary to assume a correlation function for x.

Franklin [21] has shown in a particular application that x is remarkably

insensitive to the choice for R
xx

For the special case in which

2 2
Rxx - axI and Rnn -a t (53)

where I is the identity operator and the number of unknowns equals the

number of equations available, then the solution in (52) becomes [221
2

+ n
- [A*A A*d. (54)

x

With reference to (41), (54) is equivalent to the Tykhonov [4] - Philips [5]

rwomey [6-71 regularization scheme when L is the identity operator. It can

also be shown that equivalence between (52) and (41) also holds when
A A-.

R - (*L) [26).
77 xx "1

* . ~
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4. Conclusion:

This paper discusses some mathematical concepts associated with

solution of the operator equation Ax = v. In addition to illustrating, bv

examples, concepts of ill-posed and well-posed problems, various techniques

are presented for regularizing ill-posed problems.
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